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Binding of Rat «;-Inhibitor-3-Methylamine
to the a,-Macroglobulin Signaling Receptor
Induces Second Messengers
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Abstract Binding of receptor-recognized forms of tetrameric human a;-macroglobulin (a;M*) to a macrophage
signaling receptor induces cAMP synthesis, increases in inositol 1,4,5-triphosphate (IP5) synthesis, and a concomitant
rise in cytosolic free calcium ([CaZ*};). The a,M* signaling receptor is coupled to a pertussis-toxin insensitive G protein.
Binding of a,M* also occurs to the low density lipoprotein receptor-related protein/a,;M receptor (LRP/a;MR), but this
binding does not induce signal transduction. Rat a-inhibitor-3 (ey13) is a monomeric member of the a-macroglobulin/
complement superfamily. Like a,M, it can react with proteinases or methylamine which induces a conformational
change causing activated o415 to bind to LRP/a;MR. We now report that «l;-methylamine binds to the macrophage
a;M* signaling receptor inducing a rapid rise in the synthesis of IP; with a subsequent 1.5- to 3-fold rise in [Ca2*};.
aql3-methylamine binding to macrophages also caused a statistically significant elevation in cAMP. Native o413, like oM,
was unable to induce signal transduction. e4!; forms a complex with a;-microglobulin, which has a distinct conforma-
tion from o |5 and is recognized by LRP/«;MR. This complex also induces an increase in [Ca2*]; comparable to the effect
of ayl;-methylamine on macrophages. It is concluded that activation of al; by methylamine or binding of oy-
microglobulin causes similar conformational changes in the inhibitor, exposing the receptor recognition site for the

axM* signaling receptor, as well as for LRP/a;MR.
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The a-macroglobulin/complement superfam-
ily includes complement components and pro-
teinase inhibitors. Both complement compo-
nents, such as C3 and C4, and most proteinase
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inhibitory a-macroglobulins, such as human a,-
macroglobulin (a«;M)!, contain B-cysteinyl-y-
glutamyl thioesters, which become highly reac-
tive after proteinase attack on the o-macro-
globulin subunits [Swenson and Howard, 1979;
Sottrup-Jensen et al., 1980; Howard 1981; see
also Sottrup-Jensen, 1987; Chu and Pizzo, 1994;
Salvesen and Pizzo, 1994, for review]. Reaction
of human a;M with proteinases or methyl-
amine, the latter of which directly attacks the
thioesters [Swenson and Howard, 1979; Barrett
etal., 1979; Sottrup-Jensen 1980; Howard 1981],
induces a conformational change in the inhibi-
tor [Barrett et al., 1979; Gonias et al., 1982],
exposing receptor recognition sites present in
each subunit [Debanne et al., 1975, 1976; Van
Leuven et al., 1978, 1986; Kaplan and Nielsen,
1979a,b; Willingham et al., 1980; Dickson et al.,
1981; Imber and Pizzo, 1981; Maxfield et al.,
1981; Kaplan et al., 1981]. These so-called acti-
vated forms of a;M (a;M*) bind to two types of
receptors on macrophages; namely, low density
lipoprotein-related protein/a;M receptors (LRP/
a;MR) and a more recently described a;M*
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signaling receptor (a;M*SR). LRP/a;MR is a
scavenger receptor that binds diverse ligands
including a;M*, activated a;I5, Pseudomonas
exotoxin A, lactoferrin, lipoprotein lipase, tissue
factor pathway inhibitor, thrombospondin or
plasminogen activators alone or in complex with
their inhibitors [Van Leuven et al., 1986; Beisie-
gelet al., 1989; Kowal et al., 1989; Moestrup and
Gliemann, 1989; Ashcom et al.,, 1990; Kris-
tensen et al., 1990; Strickland et al., 1990; Bu et
al., 1992; Chappell et al., 1992; Herz et al., 1992;
Kounnas et al., 1992ab; Nykjer et al., 1992;
Orth et al., 1992; Williams et al., 1992; Willnow
et al., 1992; Chappell et al., 1993; Kounnas et
al., 1993a,b; Moestrup et al., 1993; Nykjaer et
al., 1993; Warshawsky et al., 1994; Mikhailenko
et al., 1995; see also Krieger and Herz, 1994, for
review]. By contrast, a;M*SR appears to be
highly selective. It has been shown to bind hu-
man a;M* or a cloned and expressed receptor
recognition fragment from the homologous pro-
teinase inhibitor rat ouM [Salvesen et al., 1992},
but none of the other known ligands for LRP/
asMR [Misra et al., 1994a,b]. Ligation of a,M*SR
causes a very rapid increase in macrophage 1P;
synthesis followed by an increase in [Ca2*];
[Misra et al., 1993, 1994a,b]. Ligation of a;M*SR
also increases cellular levels of cAMP [Misra et
al., 1993].

Proteinase inhibitory a-macroglobulins are
generally dimeric or tetrameric, while comple-
ment components are monomeric [Hall and Rob-
erts, 1978; Feldman and Pizzo, 1984, 1985, 1986;
Quigley and Armstrong, 1985; Armstrong and
Quigley, 1987; Hudson et al., 1987; Spycher et
al., 1987; Carlsson-Bostedt et al., 1988; Hergen-
han et al., 1988; Gettins and Sottrup-Jensen,
1990; Enghild et al., 1990; see also Chu and
Pizzo, 1994, for review]. Thus, human a,M and
rat @;M are tetrameric proteinase inhibitors.
When these inhibitors bind to a proteinase, the
enzyme becomes physically entrapped in a cage-
like structure that constitutes the inhibitor
[Feldman et al., 1985; Delain et al., 1992]. The
proteinases within such traps remain active
against small substrates but are sterically hin-
dered from access to large, macromolecular sub-
strates. Several unusual monomeric members of
the a-macroglobulin family have been described
that behave like proteinase inhibitors not
complement components [Saito and Sinohara,
1985; Suzuki and Sinohara, 1986; Lonberg-
Holm et al.,, 1987; Rubenstein et al., 1993].
These inhibitors are able to block the active site

of the proteinase by some form of steric hin-
drance despite their inability to form a cage
around the proteinase [Enghild et al.,, 1989;
Rubenstein et al., 1993].

A domain structure has been proposed for
both the human asM subunits [Thomsen and
Sottrup-Jensen, 1993] and «;1; [Rubenstein et
al., 1991]. These structures are fairly similar,
except in one crucial respect; namely, the C-
terminal receptor recognition domain of human
asM consists of a 20-kDa polypeptide chain
[Thomsen and Sottrup-Jensen, 1993], while this
same 20-kDa region appears to be a part of a
larger 40-kDa domain in «;I3 [Rubenstein et al.,
1991]. This suggests potentially significant dif-
ferences in folding of this region of the molecule.
Nevertheless, most forms of proteinase inhibi-
tory a-macroglobulins, including «,1;, are able
tobind to LRP/a;MR when activated by protein-
ase or methylamine [Enghild et al., 1989; Strick-
land et al., 1990; Kristensen et al., 1990; Moes-
trup and Gliemann, 1991; Nimpf et al., 1994;
see also Moestrup, 1994, for review]. Rat oI5 is
also peculiar in that it covalently binds the im-
munoregulatory protein o,-microglobulin (a;-m)
[Falkenberg et al., 1990], blocking the protein-
ase inhibitory activity of «;1; and exposing recep-
tor recognition sites for LRP/a,;MR [Falkenberg
et al., 1995]. A monomeric a-macroglobulin is
also present in the plasma of the American
bullfrog [Rubenstein et al., 1993]. This protein
completely lacks the ability to bind to cellular
receptors whether or not it has been reacted
with proteinases or methylamine [Rubenstein
et al., 1993]. Whether this lack of cellular bind-
ing is a result of the sequence divergence or the
domain structure of this protein is unknown;
however, a tetrameric a-macroglobulin from the
frog binds to cellular receptors with the same
affinity as human a;M* [Feldman and Pizzo,
1985].

Because of these unusual properties of oI5,
we investigated the ability of o;I5-methylamine
and o;l5 in complex with a;-m to induce signal
transduction in macrophages. These studies
demonstrate that either of these forms, but not
native «a;13, induce signal transduction.

MATERIALS AND METHODS
Reagents

Sterile distilled water was obtained from Ab-
bott Laboratories (Chicago, IL). Brewer’s thio-
glycollate broth and proteose-peptone were pur-
chased from Difeo Laboratories (Baltimore, MD).
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Casein was purchased from EM Chemicals
(Elmsford, NY). Culture media were purchased
from Cellgro (Herndon, VA) and Gibco Labora-
tories (Grand Island, NY). Bovine serum albu-
min (BSA), adenosine deaminase, ATP, and tri-
chloroacetic acid were obtained from Sigma
Chemicals (St. Louis, MO). Fura-2 AM, Fura-2
pentapotassium salt, and calcium-EGTA buffers
were obtained from Molecular Probes (Eugene,
OR). Methylamine (Gold Label) was from Al-
drich Chemical (St. Louis). [*(H]PDBu (10-20
Ci/mmole) was purchased from NEN (Wilming-
ton, DE) [32P]-y-ATP (6,000 Ci/mmole) was from
Amersham (Arlington Heights, IL), and [33P]-y-
ATP (2,000 Ci/mmole) was from NEN. Other
reagents used were of analytical grade.

Cell Culture

Pathogen-free C57BI/6 mice (6 weeks old)
were obtained from Charles River Laboratories
(Raleigh, NC). Thioglycollate-, casein-, and pro-
teose-peptone-elicited macrophages were rou-
tinely obtained by peritoneal lavage with Hank’s
balanced salt solution containing 10 mM Hepes,
pH 7.4, and 3.5 mM NaHCO; (HHBSS). The
cells were washed once with HHBSS, suspended
in RPMI 1640 medium containing 2 mM gluta-
mine, 12.5 U/ml penicillin, and 6.25 pg/ml strep-
tomycin, and 5% fetal calf serum, and plated at a
cell density of 1.0 x 108 cells/cm? on glass cover-
slips kept in a 35-mm petri dish. The macro-
phages were incubated for 2 h at 37°C in a
humidified CO, (56%) incubator. The cells were
washed three times with HHBSS to remove
nonadherent cells. The macrophages were then
cultured in RPMI 1640 medium with the addi-
tions listed above for 16-18 h.

Preparation of oyl;

Rat oyI; was purified using chelate affinity
chromatography as previously described [Eng-
hild et al., 1989a]. To obtain endotoxin-free ma-
terial, the column matrix was washed with 8M
urea followed by extensive washing with deion-
ized water. All buffers used to wash and elute
the column were prepared with pyrogen-free
water. The purity of the a;1; was demonstrated
by sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS-PAGE) (5-15% gels) in a
glycine/2-amino-2-methyl-1,3-propandiol/HCl
system [Enghild et al., 1989a,b]. Methylamine
derivatives were prepared as previously de-
scribed [Enghild et al., 1989a]. The resultant
reaction products were dialyzed extensively

against HHBSS at room temperature. The con-
version to receptor-recognized forms was demon-
strated to be complete by nondenaturing 4-20%
pore limit gel electrophoresis in a Tris/EDTA/
boric acid buffer system [Enghild et al., 1989a,b].
o113 - a;-m complexes were the kind gift of Dr.
Bo Akerstré')m, (University of Lund, Lund, Swe-
den). o;I3 forms a 1:1 covalent complex with
oq-m of M, ~ 220,000.

Measurement of Intracellular Calcium Levels

[Ca2*]; in adherent macrophages was mea-
sured using the fluorescent indicator Fura-2 AM
as previously described [Misra et al., 1993]. Mac-
rophages incubated overnight in RPMI 1640
medium on glass coverslips were used. The petri
dish was removed from the incubator and cooled
to room temperature. Fura-2 AM, 1-1.5 uM,
was added and the dish incubated at room tem-
perature for 30 min in the dark. The monolayers
of macrophages were then washed twice with
HHBSS containing 75 pM Ca?*. Glass cover-
slips bearing the macrophage monolayers in this
buffer were placed on the fluorescent micro-
scope stage. [Ca?*]; was measured by a digital
video imaging technique employing a Carl Zeiss
{(Thornwood, NY) model IM 35 microscope with
a 100x NA 1.4 UVF objective (Nikon, Garden
City, NY). After collecting baseline data, the
a;l;, als-methylamine or oy15 - a;-m was added
to the coverslip. Excitation light for fluorescence
was provided by a 75-W xenon lamp. The tem-
perature was maintained at 37°C, using an air
curtain incubator. A digitized video image was
obtained by averaging up to 256 frames with the
following filter combinations: Fura-2 excitation,
340 and 380 nm; emission >450 nm. Video
frames were collected using an ISIT-66 camera
(DAGE-MTI, Inc., Michigan City, IN) and then
computed with 16-bit precision, using an IC
300-Workstation (Inovision, Research Triangle
Park, NC). Routinely, excitation intensity was
attenuated 100- to 1,000-fold before reaching
the cell and the background images were ob-
tained. The [Ca2*]; was measured by subtracting
the background from images on a pixel basis. To
obtain [Ca?*]; for an individual cell, the mean
value of the pixel ratio for the cell was compared
to values obtained with the same equipment
using Fura-2 containing EGTA-Ca?* buffers.

Quantification of Inositol Phosphates

Peritoneal macrophages were plated at 1.5-2 X
106 cells/4.5 cm? in inositol-free RPMI 1640
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medium containing 5% fetal bovine serum (FBS),
2 mM glutamine, 125 U/ml penicillin and 6.25
wg/ml streptomycin and incubated for 2 h at
37°C in a CO, (5%) humidified incubator. The
nonadherent cells were removed by washing
three times with HHBSS and inositol-free RPMI
1640 medium added to monolayers. Cells were
radiolabeled with 8 wCi/ml of 2-[*H]myo-inosi-
tol for 16 h at 37°C in CO, (5%)-humidified
incubator. Monolayers were washed five times
with HHBSS containing 10 mM LiCl,, 1 mM
MgClL;,, pH 7.4. The cells were exposed to a o;15
or a;lz-methylamine in 1 ml of the above me-
dium for varying periods of time at 37°C in a
CO, (5%) humidified incubator. The reaction
was terminated by aspirating the medium and
adding 6.25% ice-cold perchloric acid. The cells
were scraped and transferred to tubes contain-
ing 5 mM EDTA and 1 ml of octylamine:freon
(1:1, v/v) and the tubes centrifuged at 2,800
rpm for 20 min. The upper phase was applied to
a 1-m] packed Dowex resin column (AG1-X8,
formate form, BioRad, Richmond, CA) and se-
quentially eluted in a batch fashion with H,0,
50 mM, 200 mM, 400 mM, 800 mM, 1.2 M, and
2.0 M ammonium formate containing 0.1 M
formic acid, respectively, as previously described
[Misra et al.,, 1993]. An aliquot was used for
determining radioactivity in a liquid scintilla-
tion counter.

Effect of GTPyS and Gpp(NH)p on IP; in
Macrophages Stimulated with «;1;-Methylamine

Thioglycollate-elicited macrophages (2 x 106
cells/4.5 cm?) were radiolabeled with 2-[2H]myo-
inositol and, after overnight incubation, the
monolayers were washed three times with
HHBSS containing 10 mM LiCl, 1 mM CacCl,,
and 1 mM MgCl,. The cells were permeabilized
with saponin (20 pg/ml) for 10 min at 30°C in 1
ml of buffer containing 110 mM KCl, 10 mM
NaCl, 1 mM KH,PO,, 3 mM Na,ATP, 8 mM
creatine phosphate, 6 U/ml creatine phosphoki-
nase 20 mM Hepes, 10 mM LiCl, 4 mM MgCl,, 1
mM EGTA, and 0.317 mM CaCl,, pH 7.0 (final
concentrations of Ca?* and Mg?* 0.1 mM and
1.25 mM, respectively). The cells were washed
four times with HHBSS containing 10 mM LiCl,
1 mM CaCl,, and 1 mM MgCl,. The washed
monolayers were incubated with GTPyS (20
pM) or Gpp(NH)p(100 pM) for 10 min at 37°C
before adding buffer or a;I;-methylamine. 1P,
was quantified as described above.

Effect of GDPBS on GTP+S-Stimulated IP;
Formation in Macrophages Exposed to
oy13-Methylamine

Radiolabeled, permeabilized thioglycollate-
elicited macrophages were prepared as described
above. To each well, 0.5 ml of HHBSS buffer
containing 10 mM LiCl, 1 mM CaCl,, and 1 mM
MgCl, was added followed by 500 pM of GDPBS.
The cells were incubated at 37°C as above for 15
min followed by the addition of GTPvS (20 uM).
The cells were incubated at 37°C for 10 min
before adding a;l;-methylamine. Other details
of incubation and quantification of IP; are de-
scribed above. The effect of pertussis toxin on
IP; synthesis in thioglycollate-induced macro-
phages exposed to a;l;-methylamine was also
assessed as previously described [Misra et al.,
1994a,b].

cAMP Measurements

Macrophages were isolated from mice treated
with thioglycollate, washed, and suspended
RPMI 1640 medium as described under Cell
Culture. Macrophages were plated at 2 x 108/
4.5 cm? or 16 x 109/28.2 cm? Macrophages
cultured overnight were washed twice with HH-
BSS, preincubated in 1 vol of HHBSS for 5 min
at 37°C in 5% CO, and treated with either buffer
or the oI forms in the presence of 75 pM Ca2*
for varying periods of time and incubated as
above. The reactions were stopped with addition
of ice-cold methanol. The plates were kept on
ice, while macrophages were removed by scrap-
ing and transferred to tubes for lyophilization.
Lyophilized cells were resuspended in 1 ml wa-
ter, boiled for 5 min and centrifuged in a micro-
centrifuge at 12,000 rpm for 90 s as previously
described [Misra et al., 1993]. The supernatant
was assessed for cAMP levels using Amersham
(Arlington Heights, IL) RIA kits for cAMP. The
pellet was used for quantitation of protein by
Bradford’s method [1976].

PKC Measurements

Thioglycollate-elicited murine peritoneal mac-
rophages were plated at a density of 6 x 108 cells
in 35-mm Petri dishes containing RPMI 1640
medium as described under Cell Culture. After
16-18 h, the medium was aspirated and the cells
washed three times in HHBSS. Native oI5, o;15-
methylamine or buffer each containing 75 uM
Ca?* was then added. The cells were incubated
for 20 min at 37°C in a humidified incubator
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under 5% CO,. The reaction was terminated by
aspirating the buffer and addition of a volume of
buffer containing 20 mM Hepes, 10 mM EGTA,
2mM EDTA, 5 mM DTT, 20 wg/ml leupeptin, 1
mM PMSF, 0.25 M sucrose, 1% nonidet P40, pH
7.4. The cells were scraped, transferred to tubes,
and sonicated on ice (five 10-s bursts with 30-s
intervals). The sonicate was left on ice for 20
min and then centrifuged at 100,000g for 60
min at 4°C. The supernatant was then applied to
a DE 52 column preequilibrated with 20 mM
Hepes, 10 mM EGTA, 2 mM EDTA, 5 mM DTT,
1 mM PMSF, 20 ng/ml leupeptin, pH 7.4. The
column was eluted with the same buffer contain-
ing 300 mM NaCl at a flow rate of 8 ml/h. The
PKC activity was determined by histone Ills
phosphorylation using [32P]-y-ATP [Sahyoun et
al., 1989] and by [*H]-PDBu binding [Misra and
Sahyoun, 1987]. In some experiments, stauro-
sporine (20 nM) an inhibitor of PKC, was added
to the cell culture medium for a period of 8 h
prior to addition of a;I; or a;l;-methylamine.
Histone ITI phosphorylation was studied as above
except that [33P]-y-ATP was employed to replace
[32P]-ATP.

RESULTS

Effect of o413 and e;1;-Methylamine
on Macrophage Inositol Phosphates

In many cell types, agonist-induced changes
in [Ca2*]; are associated with receptor-coupled
production of IP; and DAG via stimulation of
phospholipase C [see Nishizuka, 1984, 1992;
Berridge, 1987; Putney et al., 1989; Berridge,
1993, for review]. We therefore studied the ef-
fect of a;I3-methylamine on macrophage IP; pro-
duction. Exposure of thioglycollate-elicited mac-
rophages to a;I;-methylamine caused a
significant increase in IP; (Fig. 1), but not
mother inositol phosphates (data not shown).
The kinetics and maximal effect of o;I3-methyl-
amine on IP; synthesis are essentially identical
to results obtained when a,M* binds to its signal-
ing receptor [Misra et al., 1993, 1994a,b].

o;I;-Methylamine-Induced [Ca?*]; Increases
in Single Macrophages

In view of the effects of a;I3-methylamine on
macrophage IP; synthesis, we next employed
digital imaging fluorescence microscopy to study
changes in [Ca2*]; at the single cell level in
monolayers of cells loaded with Fura-2. Murine
macrophages elicited by intraperitoneal injec-

160

Y
wn
(=]

140

130

120

pry
—
o

%GChange (over zero time)
3

10 90 190 290 390
Time (s)

Fig. 1. Formation of IP; in macrophages stimulated with na-
tive and o413-methylamine. Monolayers of cells were stimulated
with either ayl; (200 nM) (O) or a4l3-methylamine (200 nM)
(@) for varying periods of time. Water-soluble inositol phos-
phates were fractionated (see Materials and Methods) and
radioactivity determined on an aliquot. Values are percent
change compared to the zero time value, which is taken as
100%, and are representative of at least three different experi-
ments. The actual radioactivity values at t = 0 were 520 * 45
cpm (ayl3-methylamine) and 439 = 66 CPM (ayl3). *, signifi-
cantly different from the buffer control (P < 0.05).

tion of either thioglycollate, casein, or proteose-
peptone were employed. Previous studies demon-
strate that cells elicited by any of these agents
have the same number of a;M* receptors and
that the affinity for human a;M-methylamine is
also identical (K4 at 4°C ~ 1.0 nM) [Imber et al.,
1982].

Table I summarizes the data from all cells
studied. Exposure of macrophages to native a;I;
did not cause a change in [Ca?*]; as compared to
a buffer control. However, macrophages ob-
tained by each of the three standard eliciting
agents and exposed to a;l;-methylamine showed
a statistically significant increase in [Ca?*];, as
compared to oI5 or the buffer control.

We recently demonstrated that covalent com-
plexes of a;I; and «;-m do not bind proteinases
and are receptor recognized by LRP/a;MR, tar-
geting them for clearance from the murine circu-
lation [Falkenberg et al.,, 1995]. Only limited
amounts of oI5 - a;-m were available, and it was
not possible to study the effects of this complex
on IP; production. Since responses in [Ca2*]; are
more easily quantified, we chose to use the avail-
able a;I3 - a;-m to study the effects of several
concentrations on macrophage [Ca?*]; (Fig. 2).
Figure 2 shows a typical response of a single cell
exposed to o;l; - a;-m, as observed by digital
imaging microscopy. Comparisons of cells treated
with a;I3-methylamine and oI5 - a;-m (25 nM)
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TABLE 1. [CaZt]; in Macrophages Exposed to
a113 and oqI3-MethyIamine

[CaZ*}; (nM) Cell
a1l3-methylamine No.

Elicitant a1

Thioglycollate 82.15 = 0.172  168.95 = 1.07* 20

Casein 91.52 + 0.27 319.25 = 4.63* 25
Proteose-
Peptone 80.85 + 0.27 141.00 = 2.14* 18

aThe values reported are the mean = SEM. The cells were
exposed to ayl3 or ails-methylamine at a concentration of
200 nM.

*Significantly different from their respective buffer controls
(P < 0.05 by Student’s ¢-test). The values observed with
native ;I3 are comparable to the buffer control and not
significantly different.
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Fig. 2. Single cell response of macrophages exposed to
aql3 - ar-m. Thioglycollate-elicited macrophages were used in
this study. Monolayers of Fura-2 loaded cells were stimulated
with aql3 - a1m (200 nM). Arrow, time of addition of the com-
plex.

were performed on the same day to minimize
day to day variation in cellular responses. The
responses observed for o;I5-methylamine were
248.49 * 18.23 (nM) basal, 357.49 = 32.74 (nM)
stimulated and for o;I5- o;-m 211.21 +* 7.73
(nM) basal, 303.27 = 6.59 (nM) stimulated.
While the responses to a;I3-methylamine were
generally greater, the responses to a;I3 - a;-m
were statistically significant.

Effect of GTP Analogues on IP; Synthesis
in Permeabilized Macrophages Exposed to
a,13-Methylamine

We previously demonstrated that the a,M*SR
is coupled to a pertussis toxin-insensitive G pro-
tein [Misra et al., 1994a,b]. Consistent with
these previous studies, incubation of permeabi-
lized macrophages with either of the nonhydro-

lyzable GTP analogues, GTPvS, or Gpp(NH)p
significantly augmented IP; synthesis in cells
exposed to a;l3-methylamine (Fig. 3). GDPBS,
which maintains the a;M*SR-coupled G protein
in the inactive state [Misra et al., 1994a), signifi-
cantly inhibited GTPvyS-induced potentiation of
IP; production in permeabilized macrophages
exposed to a;lz-methylamine. Pertussis toxin
treatment of macrophages did not effect the
generation of IP; in macrophages exposed to
a;l;-methylamine (data not shown). Taken to-
gether, these studies are consistent with our
previous observations that ligation of the
a;M*SR by human a;M* activates a pertussis
toxin-insensitive G protein.

Effect of ayl;3 and oy1;-Methylamine
on Macrophage Protein Kinase C Activity

The above observations suggest that o;ls-
methylamine stimulates phospholipase C with
production of IP; and DAG. Since increased
[Ca?t]; and DAG typically stimulate PKC activ-
ity [see Nishizuka, 1984, 1992; Berridge, 1987,
Putney et al., 1989; Berridge, 1993, for review],
the effect of a;I3-methylamine on macrophage
PKC activity was studied. PKC activity was
evaluated by studying both [*(H]PDBu binding
to macrophage preparations and the incorpora-
tion of 32P or 33P into histone IIIs from radiola-
beled ATP. [2H]PDBu binding by macrophages
was two- to threefold greater in cells exposed to
oy I3-methylamine as compared to buffer or ol;
(Fig. 4). The extent of histone IIIs phosphoryla-
tion was also increased two- to threefold in
thioglycollate-elicited macrophages treated with
o I3-methylamine, as compared to buffer or oI
(Fig. 5). Preaddition of staurosporine caused a
significant decrease in histone IIIs phosphoryla-
tion. These studies, when taken together, indi-
cate that binding of a;Is-methylamine to macro-
phage receptors stimulates the activity of PKC.

Effect of oyl; and oy1;-Methylamine
on Macrophage cAMP

Thioglycollate-elicited macrophages were ex-
posed to native a;l; or o;lz-methylamine for
varying periods of time and cAMP pools quanti-
fied (Fig. 6). While native oyI5 did not cause a
significant increase in cAMP, exposure of macro-
phages to a;I;-methylamine resulted in a statis-
tically significant increase in cAMP at 10-30
min of exposure. After 30-min exposure to «;1;-
methylamine, macrophage cAMP levels returned
to basal levels.
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Fig. 3. Effect of GTP analogues on IP; synthesis in permeabilized
macrophages exposed to asl;-methylamine. A: Cells incubated with
(@) or without (O) GTPyS (20 pM) prior to addition of ayls-
methylamine (200 nM). B: Cells incubated with (@) or without (O)
Gpp(NH)p (100 uM) prior to addition of ajl-methylamine (200
nM). C: Cells were pretreated with GDPBS (500 wM) (@) or buffer
(O) before addition of GTPyS and subsequent addition of o1ls-
methylamine (200 nM). A—C: Changes in IP; synthesis in respective
controls and experimentals are represented as percent change over
basal value at zero time, taken as 100%. In a representative experi-
ment, the radioactivity of 1P; at zero time in different groups was:
ol3-methylamine 560 + 70 cpm; GTPyS + ayl3-methylamine 600
+ 35 cpm; Gpp(NH)p * ayl-methylamine 700 = 67 cpm and
GDPRS = GTPyS * a;l;-methylamine 819 =+ 51 cpm, respectively.
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Fig. 4. [PHIPDBu binding by macrophages stimulated with
aql;-methylamine. Peritoneal macrophages elicited with thiogly-
collate (A), casein (B), and proteose-peptone (C) were stimu-
lated with buffer, a413 (200 nM) and o I3-methylamine (200 nM)
for 20 min and processed for binding assays (see Materials and
Methods for details). Values are the mean = SEM from four
different experiments. *, significantly different from the buffer
contro! (P < 0.05). Column 1 is the buffer control. Column 2
indicates addition of a13 and column 3 of a413-methylamine.

These studies suggest that binding of a;1;-
methylamine to macrophages activates adenylyl
cyclase in addition to its effects on phospholi-
pase C-mediated pathways described above.
These results are consistent with observations
made when o, M* is employed as a ligand for the
asM*SR [Misra and Pizzo, 1994].
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Fig. 5. Histone phosphorylation by macrophages stimulated
with a;l3-methylamine. A: Peritoneal macrophages elicited with
thioglycollate were stimulated with buffer (column 1), o413 (200
nM) (cofumn 2), and oyl;-methylamine (200 nM) (column 3) for
20 min and processed for determining histone lils phosphorylat-
ing activity (see Materials and Methods for details). Values are
the mean * SEM from three different experiments. *, signifi-
cantly different from controls (P < 0.05). B: Effect of staurospo-
rine on histone llls phosphorylation. Column 7 indicates the
activity of PKC stimulated by a415-methylamine (200 nM), while
column 2 shows the effect of pretreating the macrophages with
staurosporine for 8 h prior to addition of a;1;-methylamine (200
nM). Values are the mean + SEM from three different experi-
ments. The error bar for column 2 cannot be discerned from the
top of the column. *, significant difference (P < 0.05) when
staurosporine was present.

DISCUSSION

The subunits of human «;M show about 58%
homology to rat o;I; [Braciak et al., 1988; Aiello
et al., 1988]. Nevertheless, there is some dispute
about the domain architecture of the carboxyl
terminal region of a;M subunits and monomeric
o113 [Rubenstein et al., 1991; Thomsen and Sot-
trup-Jensen, 1993]. Since the C-terminal con-
tains the binding site for all known receptor-
recognized forms of a-macroglobulins [Enghild
et al., 1989b; Salvesen et al., 1992; Holtet et al.,
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Fig. 6. Changes in cellular cAMP levels in macrophages stimu-
lated with native and oyl3-methylamine. Monolayers of perito-
neal macrophages were stimulated with native (200 nM) (O) or
aql3-methylamine (200 nM) (@) for varying periods of time and
processed for cellular cCAMP isolation and determination (see
Materials and Methods for details). Values are =SEM from five
different experiments. *, significantly different from the buffer
control (P < 0.05).

1994], this is an important consideration. While
almost all forms of proteinase inhibitory a-mac-
roglobulins appear to bind to LRP/a;MR, data
for the ayM*SR are much more limited. How-
ever, both human a;M* and a cloned and ex-
pressed C-terminal fragment (RBF) from the
homologous rat a;M [Salvesen et al., 1992] bind
to the a;M*SR [Misra et al., 1994a,b]. Both
a;M* and RBF induce comparable macrophage
signaling responses after binding to a,M*SR
[Misra et al., 1994a,b] despite the fact that a,M*
shows a 25- to 100-fold better binding affinity to
macrophage receptors [Enghild et al., 1989b;
Salvesen et al., 1992]. These data suggest that
ligand valency is not a major consideration in
macrophage signaling responses when a,M*SR
is engaged. However, the available data do not
address the issue of whether the presumed dif-
ferences in the architecture of monomeric a;l;
would allow it to bind not only to LRP/asMR,
but also to a;M*SR. Moreover, as noted in the
Introduction, the one other well characterized
a-macroglobulin from the frog does not bind to
cellular receptors [Rubenstein et al., 1993].

In the present study, we demonstrate that
oI5 when activated by methylamine is able to
bind to a;M*SR and induce changes in intracel-
lular levels of cAMP, IP;, and [Ca2+]; all of which
are comparable to effects observed when a,M*
or RBF are employed as ligands [Misra et al.,
1993, 1994a,b]. Native a;I5 is unable to induce
signal transduction, which is also comparable to
observations made with human a,M [Misra et
al., 1993, 1994a,b]. Thus methylamine-induced
conformational change in monomeric oI5 ex-
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poses the receptor recognition site for a,M*SR
in this protein, just as it does in tetrameric
human a,M.

Studies with a;15 - a;-m indicate that this com-
plex also binds to a,M*SR, suggesting that the
covalent linkage of a;-m to a;I; alters its confor-
mation much as methylamine treatment or pro-
teinase attack. This is a somewhat surprising
result since complexes of a;I; and a;-m are pre-
sent in the circulation at a concentration of
about 40 ug/ml [Falkenberg et al., 1990]. Com-
plexes of a;I3 and «;-m must therefore be pro-
duced constantly and at a high rate, since LRP/
asMR-induced cellular uptake and catabolism of
oI5 - a3-mis very rapid [Falkenberg et al., 1995].
The constant production of these complexes sug-
gests that their presence plays an important role
in normal physiology of rodents, perhaps in part
through binding to a;M*SR.
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